DrägerSensor® XXS CO LC

Order no. 68 13 210

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 6000/6500	no	yes	3 years	> 5 years
Dräger X-am 2500	no	yes	3 years	> 5 years
Dräger X-am 2800	no	yes	3 years	> 5 years
Dräger X-am 5000	no	yes	3 years	> 5 years
Dräger X-am 5600	no	yes	3 years	> 5 years
Dräger X-am 8000	no	yes	3 years	> 5 years
X-am 3500	no	yes	3 years	> 5 years

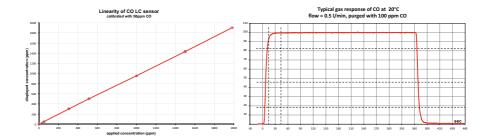
Selective filter - unexchangeable

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.

The filter's service life can be calculated as follows: 10,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 10,000 ppm x hours/10 ppm = 1,000 hours.

MARKET SEGMENTS


Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, measuring dangerous substances, biogas.

TECHNICAL SPECIFICATIONS

Detection limit:	1 ppm	
Resolution:	1 ppm	
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)	
Response time:	≤ 15 seconds (t ₉₀)	
Precision		
Sensitivity:	≤ ± 2% of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 2 ppm/year	
Sensitivity:	≤ ± 3% of measured value/year	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 5 ppm	
Sensitivity:	≤ ± 0.3% of measured value/K	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.02% of measured value/% RH	
Test gas:	approx. 20 to 1800 ppm CO	

SPECIAL CHARACTERISTICS

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. An internal selective filter, which is fitted to the sensor as standard, filters out most associated gases such as alcohol and acid gases H_2S , SO_2 .

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Acetylene	C ₂ H ₂	100 ppm	≤ 200
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	No effect
Ethene	C ₂ H ₄	100 ppm	≤ 300
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	≤ 200
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect*
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect

^{*} Concentrations significantly above 200 ppm H2S can lead to an influence (filter breakthrough) on the sensor in case of continuous exposure to H₂S.